数据结构学习记录——图的遍历(深度优先搜索、广度优先搜索、为什么需要两种遍历、图不连通怎么办)

news/2024/7/24 13:35:19 标签: 数据结构, 学习, 深度优先, 宽度优先, 算法

目录

深度优先搜索

概念

图解过程

伪代码 

时间复杂度

具体代码(C语言)

广度优先搜索 

概念

图解过程 

伪代码

时间复杂度

具体代码(C语言)

为什么需要两种遍历

图不连通怎么办

连通

路径 

回路 

连通图 

连通分量

强连通

强连通图 

强连通分量 

解决-C语言


深度优先搜索

概念

深度优先搜索(Depth First SearchDFS

在图G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:

首先访问出发点v,并将其标记为已访问过;

然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则返回去另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

类似于树的先序遍历,例如要深度优先遍历下面的一个图:

图解过程

具体的一个过程如下:

 

伪代码 

时间复杂度

若有N个顶点、E条边,时间复杂度是:

  • 用邻接表存储图,为O(N+E)
  • 用邻接矩阵存储图,为O(N的平方)

具体代码(C语言)

#define MAX_VERTICES 100

int visited[MAX_VERTICES];

typedef struct Node 
{
    int vertex;
    struct Node* next;
} Node;

// 深度优先遍历图函数
void DFS(Node* graph[], int v) 
{
    visited[v] = 1; // 标记当前顶点为已访问
    printf("%d ", v); // 输出当前访问的顶点

    Node* current = graph[v]; // 获取当前顶点的邻接链表头节点
    while (current != NULL) 
    {
        int adjacentVertex = current->vertex; // 获取当前邻接顶点
        if (!visited[adjacentVertex]) 
        {
            DFS(graph, adjacentVertex); // 递归调用DFS,遍历邻接顶点
        }
        current = current->next; // 继续处理下一个邻接顶点
    }
}

广度优先搜索 

概念

广度优先搜索(Breadth First SearchBFS

它从图中的某个顶点开始遍历,先访问它的所有邻接顶点,然后再逐层遍历下去,直到图中所有顶点都被访问到为止。

就类似于树的层序遍历,一样是通过队列来实现,再取之前那个图:

图解过程 

具体遍历过程:

伪代码

时间复杂度

若有N个顶点、E条边,

  • 用邻接表存储图,时间复杂度为O(N+E)
  • 用邻接矩阵存储图,有O(N的平方)

具体代码(C语言)

#define MAX_VERTICES 100 // 最大顶点数

// 广度优先搜索函数
void BFS(Vertex V, Vertex* adjacencyList[]) 
{
    bool visited[MAX_VERTICES]; // 记录顶点是否已访问
    Queue* Q = createQueue(); // 创建一个队列用于存储待访问的顶点

    // 初始化visited数组为false,表示所有顶点都未被访问
    for (int i = 0; i < MAX_VERTICES; i++) 
    {
        visited[i] = false;
    }

    visited[V] = true; // 标记起始顶点V为已访问
    enqueue(Q, V); // 将起始顶点V入队

    while (!isEmpty(Q))
    {
        V = dequeue(Q); // 从队列中取出一个顶点V

        // 遍历V的每个邻接点W
        Vertex* adjVertex = adjacencyList[V]; // 获取顶点V的邻接点链表头指针
        while (adjVertex != NULL) 
        {
            int W = adjVertex->data; // 获取邻接点W的数据

            if (!visited[W]) 
            {
                visited[W] = true; // 标记顶点W为已访问
                enqueue(Q, W); // 将顶点W入队
            }

            adjVertex = adjVertex->next; // 遍历下一个邻接点
        }
    }
}

Vertex* adjacencyList[]参数表示图的邻接表,以便获取顶点V的邻接点链表头指针。在

内部的while循环中,使用adjVertex指针遍历顶点V的邻接点链表,获取每个邻接点W的数据,并进行相应的操作。

 

为什么需要两种遍历

我们可以用走迷宫的方式来解释为什么需要两种遍历方式。

假设我们有一个迷宫,迷宫可以看作是一个图形数据结构,其中每个房间都是一个节点,房间之间的通道则是边。

深度优先遍历(DFS)

当我们使用深度优先遍历时,我们会选择一条路径,沿着这条路径尽可能远地探索下去,直到无法继续为止,然后返回上一层节点继续探索。

换在迷宫中,就意味着我们会选择一个通道,并一直走到无法再走下去为止,然后返回到上一个房间,继续选择下一个可行的通道进行探索。

这样就会导致,我们会沿着一个路径一直走到底,直到找到解决问题的目标或者无路可走。

DFS的特点是适合深度探索,对于搜索路径较深的问题很有效。

广度优先遍历(BFS)
与DFS不同,广度优先遍历是逐层扩展。

我们从起点开始,首先探索与起点直接相邻的节点,然后再探索与这些节点相邻的节点,以此类推,直到找到解决问题的目标或者遍历完整个图。

在迷宫中,我们先选择起点的所有相邻房间,然后再选择这些房间的所有相邻的房间,以此类推。这样做的结果是,我们会逐层地扩展搜索,确保我们在搜索过程中覆盖了所有可能的路径。

BFS的特点是适合寻找最短路径或者层次遍历问题。

所以,DFS和BFS在处理图形数据结构时具有不同的特点和应用场景。DFS适合深度探索和回溯问题,而BFS适合寻找最短路径或者层次遍历问题。根据具体的问题需求,我们可以选择适合的遍历方式来解决。

图不连通怎么办

连通

如果从V到W存在一条(无向)路径,则称V和W是连通的。

路径 

V到W的路径是一系列顶点{V,V1,V2,...,Vn,W}的集合,其中任一对相邻的顶点间都有图中的边。路径的长度是路径中的边数(如果带权,则是所有边的权重和)。如果V到W之间的所有顶点都不同,则称简单路径

回路 

起点等于终点的路径。

连通图 

图中任意两顶点均连通。

连通分量

无向图的极大连通子图。

  • 极大顶点数:以原来的图为来源,再加1个顶点就不连通了。
  • 极大边数:包含子图中所有顶点相连的所有边。

 

根据上面这个图,我们来判断一下以下是否是其连通分量:

(一)

 

 是其连通分量,因为包含了子图中所有顶点相连的边,而且再加一个顶点就不能连通了,例:

 (二)

是其连通分量 ,与(一)类似。

(三)

不是其连通分量 ,不包含子图中所有顶点相连的边。

(四)

不是其连通分量 ,虽然包含了子图所有顶点相连的边,但是不满足极大顶点数,加入A点之后还是连通的。

强连通

有向图中顶点v和w之间存在双向路径,则称v和w是强连通的。 

强连通图 

有向图中任意两顶点均强连通。

强连通分量 

有向图的极大强连通子图。

强连通图:

强连通分量: 

在图G中,

它的强连通分量是:

解决-C语言

#define MAX_VERTICES 100 // 最大顶点数
// 定义图
typedef struct Graph 
{
    int numVertices;
    Node* adjacencyList[MAX_VERTICES];
    int visited[MAX_VERTICES];
} Graph;

// 遍历所有连通分量
void ListComponents(Graph* graph) 
{
    int i;
    for (i = 0; i < graph->numVertices; ++i) 
    {
        if (!graph->visited[i]) 
        {
            DFS(graph, i);
        }
    }
}

end


学习自:MOOC数据结构——陈越、何钦铭


http://www.niftyadmin.cn/n/329517.html

相关文章

深度学习之迁移学习

数据增强 数据太少可能会过拟合。 # data_transforms中指定了所有图像预处理&#xff08;变换&#xff09;操作&#xff08;图像数据增强&#xff09; data_transforms {train: transforms.Compose([transforms.RandomRotation(45), # 随机旋转&#xff0c;-45到45度之间随…

Go语言面试题--进阶提升(10)

文章目录 1.下面代码输出什么&#xff1f;2.下面的代码能编译通过吗&#xff1f;可以的话输出什么&#xff0c;请说明&#xff1f;3.下面代码有什么问题&#xff0c;请说明&#xff1f;4.假设 x 已声明&#xff0c;y 未声明&#xff0c;下面 4 行代码哪些是正确的。错误的请说明…

中本聪思想精髓难以领悟?Web3实际上还在“幻想”之中?

Web3概念是不错&#xff0c;有人说它是下一代互联网&#xff0c;有人说它是NFT和元宇宙等未来应用的基础设施。然而理论炒得火热&#xff0c;但却仍不见像ChatGPT一样能引爆市场的杀手级应用出现。 原因在于&#xff0c;当前的Web3概念是对中本聪思想的不断概括和提炼&#xff…

丁鹿学堂:2023前端学习指南之vue3的数据响应式原理总结

js的普通对象 如果定义一个普通对象&#xff0c;修改对象的值&#xff0c;不会影响别的元素。 const obj {name:丁鹿,age:20 } obj.name 前端如果想要在修改对象的元素的同时&#xff0c;去触发一些别的操作&#xff0c;我们需要把对象进行改造。 在vue3中&#xff0c;使用…

面向对象分析与设计_类图

判断题 类与对象之间的关系&#xff0c;可以理解为模板与具体实例之间的关系 T 类是现实世界中客观存在的事物或实体。 F 类是具有相同属性和服务的一组对象的集合 T 对象的属性都有值&#xff0c;类的属性没有值 T 类的可见性描述了其属性和操作是否对于其他类可见&…

如何把容器变成物理机

如何把容器变成物理机 本文的主题是把容器变成物理机&#xff0c;根据所学的知识。以及通过各种搜索引擎。他们都告诉我们&#xff0c;这是不可能的。这真的是不可能的吗&#xff1f;我不信&#xff0c;那我就要创造奇迹。请继续往下看。本文将教你如何把容器变成物理机。 这…

ES6中Proxy

1. Proxy 说明&#xff1a;Proxy可以理解成在目标对象架设一层拦截器&#xff0c;外界访问内部的变量都必须经过这一层&#xff0c;可以对外界的访问进行过滤和改写。 1.1例子&#xff1a; const proxynew Proxy(target,handler) 说明&#xff1a;Proxy对象的用法&#xff0…

AMBER分子动力学模拟之结果分析(最低能量结果)-- HIV蛋白酶-抑制剂复合物(3)

AMBER分子动力学模拟之结果分析(最低能量结果)-- HIV蛋白酶-抑制剂复合物(3) 在analysis目录下 解析.out文件 下载process_mdout.perl 脚本 perl process_mdout.perl ../md/md0.out ../md/md1.out ../md/md2.out # 可以不使用md0.out # 或者 $AMBERHOME/bin/process_md…