【YOLOv5改进系列(6)】高效涨点----使用DAMO-YOLO中的Efficient RepGFPN模块替换yolov5中的Neck部分

在这里插入图片描述


文章目录

  • 🚀🚀🚀前言
  • 一、1️⃣ 添加yolov5_GFPN.yaml文件
  • 二、2️⃣添加extra_modules.py代码
  • 三、3️⃣yolo.py文件添加内容
    • 3.1 🎓 添加CSPStage模块
  • 四、4️⃣实验结果
    • 4.1 🎓 使用yolov5s.pt训练的结果对比
    • 4.2 ✨ 使用yolov5l.pt训练的结果对比
    • 4.3 ⭐️ 实验结果分析


在这里插入图片描述

👀🎉📜系列文章目录

必读【论文精读】DAMO-YOLO:兼顾速度与精度的高效目标检测框架( A Report on Real-Time Object Detection Design)
YOLOv5改进系列(1)】高效涨点----使用EIoU、Alpha-IoU、SIoU、Focal-EIOU替换CIou
YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU
YOLOv5改进系列(3)】高效涨点----Optimal Transport Assignment:OTA最优传输方法
YOLOv5改进系列(4)】高效涨点----添加可变形卷积DCNv2
YOLOv5改进系列(5)】高效涨点----添加密集小目标检测NWD方法

🚀🚀🚀前言

⚡️DAMO-YOLO是阿里巴巴达摩院在2022年提出的一种模型,其实在当时yolov5和v6已经出来了,并且也有部分实时监测比较好的算法模型,但是当前检测框架在实际应用时仍然有以下几个痛点:

  • ① 模型尺度变化不够灵活,难以适应不同的算力场景。如 YOLO 系列的检测框架,一般只提供 3-5 个模型的计算量,从十几到一百多 Flops 数量级,难以覆盖不同的算力场景。
  • ② 多尺度检测能力弱,特别是小物体检测性能较差,这使得模型应用场景十分受限。比如在无人机检测场景,它们的效果往往都不太理想。
  • ③ 速度/精度曲线不够理想,速度和精度难以同时兼容。

☀️针对上述情况,达摩院计算机视觉团队设计并开源了 DAMO-YOLO,DAMO-YOLO 主要着眼于工业落地。相比于其他的目标检测框架具有三个明显的技术优势:

  • ① 整合了自研 NAS 技术,可低成本自定义模型,让用户充分发挥芯片算力。
  • ② 结合 Efficient RepGFPN 以及 HeavyNeck 模型设计范式,能够很大程度上提高模型的多尺度检测能力,扩大模型应用范围。
  • ③ 提出了全尺度通用的蒸馏技术,将大模型的知识转移到小模型上,在不带来推理负担的情况下,提升小模型的性能。

关于DAMO-YOLO的一些其他细节这里不做过多解释,像MAE-NAS技术进行 backbone 的搜索、蒸馏模型等技术如果感兴趣可以看一下这篇文章DAMO-YOLO:【论文精读】DAMO-YOLO:兼顾速度与精度的高效目标检测框架( A Report on Real-Time Object Detection Design)

🚀本文改进使用的是DAMO-YOLO 中的Efficient RepGFPN特征网络融合部分,该网络是在GFPN特征网络上进行改进的,因为GFPN有很多上采样操作并且并行化比较低,导致了Flops高效Latency低效;因此我使用Efficient RepGFPN方法去替换了yolov5中Neck部分的PANet融合方法;

实验方面我分别使用yolov5s.pt和yolov5l.pt两个权重来进行训练,然后将yolov5_GFPN.yamldepth_multiplewidth_multiple分别设置成(0.33,0.50)和(1.0,1.0)对标yolov5s和yolov5l
实验结果: 与yolov5s基准模型相比,使用Efficient RepGFPN之后map@0.5反而下降了,但是替换之后与yolov5l基准模型相比,map@0.5提升了近4个百分点,同时f1置信分数也有所增加。至于为什么会出现这种情况,在实验总结部分我写出自己理解的一些解释。


一、1️⃣ 添加yolov5_GFPN.yaml文件

🚀在models文件下新建一个yolov5_GFPN.yaml文件,将如下代码复制到yaml文件中;我这里depth_multiple、width_multiple设置的都是1,需要使用yolov5l权重进行训练,如果想要使用yolov5s的权重训练,只需要将depth_multiple、width_multiple分别设置为0.33和0.5。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 6  # number of classes
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
anchors:
  - [ 10,13, 16,30, 33,23 ]  # P3/8
  - [ 30,61, 62,45, 59,119 ]  # P4/16
  - [ 116,90, 156,198, 373,326 ]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ],  # 0-P1/2
    [ -1, 1, Conv, [ 128, 3, 2 ] ],  # 1-P2/4
    [ -1, 3, C3, [ 128 ] ],
    [ -1, 1, Conv, [ 256, 3, 2 ] ],  # 3-P3/8
    [ -1, 6, C3, [ 256 ] ],
    [ -1, 1, Conv, [ 512, 3, 2 ] ],  # 5-P4/16
    [ -1, 9, C3, [ 512 ] ],
    [ -1, 1, Conv, [ 1024, 3, 2 ] ],  # 7-P5/32
    [ -1, 3, C3, [ 1024 ] ],
    [ -1, 1, SPPF, [ 1024, 5 ] ],  # 9
  ]

# DAMO-YOLO GFPN Head
head:
  [ [ -1, 1, Conv, [ 512, 1, 1 ] ], # 10 添加这个是为了使用1x1卷积进行降维
    [ 6, 1, Conv, [ 512, 3, 2 ] ],
    [ [ -1, 10 ], 1, Concat, [ 1 ] ],
    [ -1, 3, CSPStage, [ 512 ] ], # 13

    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], #14
    [ 4, 1, Conv, [ 256, 3, 2 ] ], # 15
    [ [ 14, -1, 6 ], 1, Concat, [ 1 ] ],
    [ -1, 3, CSPStage, [ 512 ] ], # 17

    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
    [ [ -1, 4 ], 1, Concat, [ 1 ] ],
    [ -1, 3, CSPStage, [ 256 ] ], # 20

    [ -1, 1, Conv, [ 256, 3, 2 ] ],
    [ [ -1, 17 ], 1, Concat, [ 1 ] ],
    [ -1, 3, CSPStage, [ 512 ] ], # 23

    [ 17, 1, Conv, [ 256, 3, 2 ] ], # 24
    [ 23, 1, Conv, [ 256, 3, 2 ] ], # 25
    [ [ 13, 24, -1 ], 1, Concat, [ 1 ] ],
    [ -1, 3, CSPStage, [ 1024 ] ], # 27

    [ [ 20, 23, 27 ], 1, Detect, [ nc, anchors ] ],  # Detect(P3, P4, P5)
  ]

二、2️⃣添加extra_modules.py代码

📌在models文件下新建一个extra_modules.py文件,将如下代码复制到文件中;这部分代码就是Efficient RepGFPN的实现方法。

import torch
import torch.nn as nn
import torch.nn.functional as F


def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
    '''Basic cell for rep-style block, including conv and bn'''
    result = nn.Sequential()
    result.add_module(
        'conv',
        nn.Conv2d(in_channels=in_channels,
                  out_channels=out_channels,
                  kernel_size=kernel_size,
                  stride=stride,
                  padding=padding,
                  groups=groups,
                  bias=False))
    result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
    return result


class RepConv(nn.Module):
    '''RepConv is a basic rep-style block, including training and deploy status
    Code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
    '''

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=1,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 deploy=False,
                 act='relu',
                 norm=None):
        super(RepConv, self).__init__()
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels
        self.out_channels = out_channels

        assert kernel_size == 3
        assert padding == 1

        padding_11 = padding - kernel_size // 2

        if isinstance(act, str):
            self.nonlinearity = get_activation(act)
        else:
            self.nonlinearity = act

        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels,
                                         out_channels=out_channels,
                                         kernel_size=kernel_size,
                                         stride=stride,
                                         padding=padding,
                                         dilation=dilation,
                                         groups=groups,
                                         bias=True,
                                         padding_mode=padding_mode)

        else:
            self.rbr_identity = None
            self.rbr_dense = conv_bn(in_channels=in_channels,
                                     out_channels=out_channels,
                                     kernel_size=kernel_size,
                                     stride=stride,
                                     padding=padding,
                                     groups=groups)
            self.rbr_1x1 = conv_bn(in_channels=in_channels,
                                   out_channels=out_channels,
                                   kernel_size=1,
                                   stride=stride,
                                   padding=padding_11,
                                   groups=groups)

    def forward(self, inputs):
        '''Forward process'''
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.rbr_reparam(inputs))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)

        return self.nonlinearity(
            self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(
            kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3),
                                        dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(
                    branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def switch_to_deploy(self):
        if hasattr(self, 'rbr_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam = nn.Conv2d(
            in_channels=self.rbr_dense.conv.in_channels,
            out_channels=self.rbr_dense.conv.out_channels,
            kernel_size=self.rbr_dense.conv.kernel_size,
            stride=self.rbr_dense.conv.stride,
            padding=self.rbr_dense.conv.padding,
            dilation=self.rbr_dense.conv.dilation,
            groups=self.rbr_dense.conv.groups,
            bias=True)
        self.rbr_reparam.weight.data = kernel
        self.rbr_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('rbr_dense')
        self.__delattr__('rbr_1x1')
        if hasattr(self, 'rbr_identity'):
            self.__delattr__('rbr_identity')
        if hasattr(self, 'id_tensor'):
            self.__delattr__('id_tensor')
        self.deploy = True


class Swish(nn.Module):
    def __init__(self, inplace=True):
        super(Swish, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        if self.inplace:
            x.mul_(F.sigmoid(x))
            return x
        else:
            return x * F.sigmoid(x)


def get_activation(name='silu', inplace=True):
    if name is None:
        return nn.Identity()

    if isinstance(name, str):
        if name == 'silu':
            module = nn.SiLU(inplace=inplace)
        elif name == 'relu':
            module = nn.ReLU(inplace=inplace)
        elif name == 'lrelu':
            module = nn.LeakyReLU(0.1, inplace=inplace)
        elif name == 'swish':
            module = Swish(inplace=inplace)
        elif name == 'hardsigmoid':
            module = nn.Hardsigmoid(inplace=inplace)
        elif name == 'identity':
            module = nn.Identity()
        else:
            raise AttributeError('Unsupported act type: {}'.format(name))
        return module

    elif isinstance(name, nn.Module):
        return name

    else:
        raise AttributeError('Unsupported act type: {}'.format(name))


def get_norm(name, out_channels, inplace=True):
    if name == 'bn':
        module = nn.BatchNorm2d(out_channels)
    else:
        raise NotImplementedError
    return module


class ConvBNAct(nn.Module):
    """A Conv2d -> Batchnorm -> silu/leaky relu block"""

    def __init__(
            self,
            in_channels,
            out_channels,
            ksize,
            stride=1,
            groups=1,
            bias=False,
            act='silu',
            norm='bn',
            reparam=False,
    ):
        super().__init__()
        # same padding
        pad = (ksize - 1) // 2
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=ksize,
            stride=stride,
            padding=pad,
            groups=groups,
            bias=bias,
        )
        if norm is not None:
            self.bn = get_norm(norm, out_channels, inplace=True)
        if act is not None:
            self.act = get_activation(act, inplace=True)
        self.with_norm = norm is not None
        self.with_act = act is not None

    def forward(self, x):
        x = self.conv(x)
        if self.with_norm:
            x = self.bn(x)
        if self.with_act:
            x = self.act(x)
        return x

    def fuseforward(self, x):
        return self.act(self.conv(x))


class BasicBlock_3x3_Reverse(nn.Module):
    def __init__(self,
                 ch_in,
                 ch_hidden_ratio,
                 ch_out,
                 act='relu',
                 shortcut=True):
        super(BasicBlock_3x3_Reverse, self).__init__()
        assert ch_in == ch_out
        ch_hidden = int(ch_in * ch_hidden_ratio)
        self.conv1 = ConvBNAct(ch_hidden, ch_out, 3, stride=1, act=act)
        self.conv2 = RepConv(ch_in, ch_hidden, 3, stride=1, act=act)
        self.shortcut = shortcut

    def forward(self, x):
        y = self.conv2(x)
        y = self.conv1(y)
        if self.shortcut:
            return x + y
        else:
            return y


class SPP(nn.Module):
    def __init__(
            self,
            ch_in,
            ch_out,
            k,
            pool_size,
            act='swish',
    ):
        super(SPP, self).__init__()
        self.pool = []
        for i, size in enumerate(pool_size):
            pool = nn.MaxPool2d(kernel_size=size,
                                stride=1,
                                padding=size // 2,
                                ceil_mode=False)
            self.add_module('pool{}'.format(i), pool)
            self.pool.append(pool)
        self.conv = ConvBNAct(ch_in, ch_out, k, act=act)

    def forward(self, x):
        outs = [x]

        for pool in self.pool:
            outs.append(pool(x))
        y = torch.cat(outs, axis=1)

        y = self.conv(y)
        return y


class CSPStage(nn.Module):
    def __init__(self,
                 ch_in,
                 ch_out,
                 n,
                 block_fn='BasicBlock_3x3_Reverse',
                 ch_hidden_ratio=1.0,
                 act='silu',
                 spp=False):
        super(CSPStage, self).__init__()

        split_ratio = 2
        ch_first = int(ch_out // split_ratio)
        ch_mid = int(ch_out - ch_first)
        self.conv1 = ConvBNAct(ch_in, ch_first, 1, act=act)
        self.conv2 = ConvBNAct(ch_in, ch_mid, 1, act=act)
        self.convs = nn.Sequential()

        next_ch_in = ch_mid
        for i in range(n):
            if block_fn == 'BasicBlock_3x3_Reverse':
                self.convs.add_module(
                    str(i),
                    BasicBlock_3x3_Reverse(next_ch_in,
                                           ch_hidden_ratio,
                                           ch_mid,
                                           act=act,
                                           shortcut=True))
            else:
                raise NotImplementedError
            if i == (n - 1) // 2 and spp:
                self.convs.add_module(
                    'spp', SPP(ch_mid * 4, ch_mid, 1, [5, 9, 13], act=act))
            next_ch_in = ch_mid
        self.conv3 = ConvBNAct(ch_mid * n + ch_first, ch_out, 1, act=act)

    def forward(self, x):
        y1 = self.conv1(x)
        y2 = self.conv2(x)

        mid_out = [y1]
        for conv in self.convs:
            y2 = conv(y2)
            mid_out.append(y2)
        y = torch.cat(mid_out, axis=1)
        y = self.conv3(y)
        return y

三、3️⃣yolo.py文件添加内容

3.1 🎓 添加CSPStage模块

📌找到models文件夹的yolo.py文件,在最上方将extra_modules.py文件中的CSPStage模块导入进来,代码如下:

from models.extra_modules import CSPStage

在这里插入图片描述

📌然后在yolo.py文件中找到parse_model网络解析函数,在下面两个地方添加CSPStage

在这里插入图片描述

四、4️⃣实验结果

4.1 🎓 使用yolov5s.pt训练的结果对比

yolov5基准模型训练结果:F1置信度分数为0.71、map@0.5=0.78;
在这里插入图片描述

添加Efficient RepGFPN模块训练结果:F1置信度分数为0.76、map@0.5=0.763;
在这里插入图片描述

4.2 ✨ 使用yolov5l.pt训练的结果对比

yolov5基准模型训练结果:F1置信度分数为0.8、map@0.5=0.795;
在这里插入图片描述

添加Efficient RepGFPN模块训练结果:F1置信度分数为0.82、map@0.5=0.833;
在这里插入图片描述

4.3 ⭐️ 实验结果分析

🚀两个对比实验可以看出,使用yolov5s.pt进行训练的时候,Efficient RepGFPN模块替换原有的PANet之后map@0.5反而下降了,但是yolov5l.pt相较于基准模型,map@0.5和f1置信分数都有明显的增加,这个可能是和Efficient RepGFPN的HeavyNeck有关,DAMO-YOLO设计的理念是将小部分参数运算应用到backbone部分,将大部分的参数运算放在了Neck特征融合部分,所以在网络加深的情况下,Neck可以获取到更多的特征信息,所以在处理特征信息方面可能要优于PANet。欢迎大家一起讨论!!!


在这里插入图片描述


http://www.niftyadmin.cn/n/5457940.html

相关文章

【JAVAEE学习】探究Java中多线程的使用和重点及考点

˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…

Redis命令介绍

一、redis启动: 本地启动:redis-cli 远程启动:redis-cli -h host -p port -a password Redis 连接命令 1 AUTH password 验证密码是否正确 2 ECHO message 打印字符串 3 PING 查看服务是否运行 4 QUIT 关闭当前连接 5 SELECT index 切换…

大数据集群中安装MySQL

安装MySQL 1)上传MySQL安装包以及MySQL驱动jar包 mysql-5.7.28-1.el7.x86_64.rpm-bundle.tarmysql-connector-java-5.1.37.jar2)解压MySQL安装包,在/opt/software文件夹下 mkdir mysql_lib tar -xf mysql-5.7.28-1.el7.x86_64.rpm-bundle.…

百度智能云千帆,产业创新新引擎

本文整理自 3 月 21 日百度副总裁谢广军的主题演讲《百度智能云千帆,产业创新新引擎》。 各位领导、来宾、媒体朋友们,大家上午好。很高兴今天在石景山首钢园,和大家一起沟通和探讨大模型的发展趋势,以及百度最近一段时间的思考和…

R语言赋值符号<-、=、->、<<-、->>的使用与区别

R语言的赋值符号有&#xff1c;-、、-&#xff1e;、&#xff1c;&#xff1c;-、-&#xff1e;&#xff1e;六种&#xff0c;它们的使用与区别如下: <-’&#xff1a;最常用的赋值符号。它将右侧表达式的值赋给左侧的变量&#xff0c;像一个向左的箭头。例如&#xff0c;x …

HarmonyOS 应用开发之任务(Mission)管理场景介绍

任务&#xff08;Mission&#xff09;管理相关的基本概念如下&#xff1a; AbilityRecord&#xff1a;系统服务侧管理一个UIAbility实例的最小单元&#xff0c;对应一个应用侧的UIAbility组件实例。系统服务侧管理UIAbility实例数量上限为512个。MissionRecord&#xff1a;任务…

Linux内核之最核心数据结构之一:struct file(三十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

Web安全基础入门+信息收集篇

教程介绍 学习信息收集&#xff0c;针对域名信息,解析信息,网站信息,服务器信息等&#xff1b;学习端口扫描&#xff0c;针对端口进行服务探针,理解服务及端口对应关系&#xff1b;学习WEB扫描&#xff0c;主要针对敏感文件,安全漏洞,子域名信息等&#xff1b;学习信息收集方法…