YOLOv9改进策略:卷积魔改 | AKConv(可改变核卷积),即插即用的卷积,效果秒杀DSConv | 2023年11月最新发表

 💡💡💡本文改进内容: YOLOv9如何魔改卷积进一步提升检测精度?AKConv 通过不规则卷积运算完成高效特征提取的过程,为卷积采样形状带来更多探索选择。 AKConv可以作为即插即用的卷积运算来替代卷积运算来提高网络性能。在数据集 COCO2017、VOC07+12 和 VisDrone-DET2021 上进行的物体检测实验充分展示了 AKConv 的优势。

yolov9-c-AKConv summary: 968 layers, 50952916 parameters, 50952884 gradients, 236.3 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.AKConv原理介绍

论文:https://arxiv.org/pdf/2311.11587.pdf

摘要:基于卷积运算的神经网络在深度学习领域取得了令人瞩目的成果,但标准卷积运算存在两个固有的缺陷。一方面,卷积运算仅限于局部窗口,无法捕获其他位置的信息, 并且它的采样形状是固定的。 另一方面,卷积核的大小固定为k×k,是一个固定的正方形,参数的数量往往随大小呈平方增长。 很明显,不同数据集和不同位置的目标的形状和大小是不同的。 具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标 针对上述问题,本工作探索了可改变核卷积(AKConv),它赋予卷积核任意数量的参数和任意采样形状,为网络开销和性能之间的权衡提供更丰富的选择。 在 AKConv 中,我们通过新的坐标生成算法定义任意大小的卷积核的初始位置。 为了适应目标的变化,我们引入了偏移量来调整每个位置的样本形状。 此外,我们通过使用具有相同大小和不同初始采样形状的 AKConv 来探索神经网络的效果。 AKConv 通过不规则卷积运算完成高效特征提取的过程,为卷积采样形状带来更多探索选择。 在代表性数据集 COCO2017、VOC 7+12 和 VisDrone-DET2021 上进行的物体检测实验充分展示了 AKConv 的优势。 AKConv可以作为即插即用的卷积运算来替代卷积运算来提高网络性能。

很明显,与 Deformabled 和标准 Conv 相比,AKConv 有更多的选择,并且卷积参数的数量随着卷积核大小呈线性增加。 注意:为了清楚地描述 AKConv 的优点,在 AKConv 和 Deformable Conv 中我们忽略了学习偏移量的参数数量,因为它远小于特征提取中涉及的卷积参数数量。

作者认为 AKConv 的设计是一种新颖的设计,它实现了从不规则和任意采样形状的卷积核中提取特征的壮举。 即使不使用 Deformable Conv 中的偏移思想,AKConv 仍然可以做出多种卷积核形状。 因为,AKConv可以用初始坐标重新采样来呈现多种变化。 如图4所示,我们为大小为5的卷积设计了各种初始采样形状。在图4中,我们只显示了大小为5的一些示例。但是,AKConv的大小可以是任意的,因此随着大小的增加,初始采样形状会随着大小的增加而变化。 AKConv 的卷积采样形状变得更加丰富甚至无限。 鉴于不同数据集的目标形状各不相同,设计与采样形状相对应的卷积运算至关重要。 AKConv完全是通过根据特定相位域设计相应形状的卷积运算来实现的。 它还可以类似于 Deformable Conv,通过添加可学习的偏移来动态适应对象的变化。 对于特定任务,卷积核初始采样位置的设计很重要,因为它是先验知识。 正如齐等人所言。 [27],他们为细长管状结构分割任务提出了具有相应形状的采样坐标,但他们的形状选择仅适用于细长管状结构。 

展示核大小为5的初始样本形状。AKConv可以通过设计不同的初始采样形状来实现任意采样形状。

实验结果,数据集 COCO2017、VOC 7+12 和 VisDrone-DET2021 上进行的物体检测实验充分展示了 AKConv 的优势

 

    

3.AKConv加入到YOLOv9

3.1新建py文件,路径为models/Conv/AKConv.py

import torch
import torch.nn as nn
import math
from einops import rearrange
 
class AKConv(nn.Module):
    def __init__(self, inc, outc, num_param, stride=1, bias=None):
        super(AKConv, self).__init__()
        self.num_param = num_param
        self.stride = stride
        self.conv = nn.Sequential(nn.Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias),nn.BatchNorm2d(outc),nn.SiLU())  # the conv adds the BN and SiLU to compare original Conv in YOLOv5.
        self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)
        nn.init.constant_(self.p_conv.weight, 0)
        self.p_conv.register_full_backward_hook(self._set_lr)
    #https://blog.csdn.net/m0_63774211/category_12289773.html?spm=1001.2014.3001.5482
    @staticmethod
    def _set_lr(module, grad_input, grad_output):
        grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
        grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))
 
    def forward(self, x):
        # N is num_param.
        offset = self.p_conv(x)
        dtype = offset.data.type()
        N = offset.size(1) // 2
        # (b, 2N, h, w)
        p = self._get_p(offset, dtype)
 
        # (b, h, w, 2N)
        p = p.contiguous().permute(0, 2, 3, 1)
        q_lt = p.detach().floor()
        q_rb = q_lt + 1
 
        q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
        q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)
 
        # clip p
        p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)
 
        # bilinear kernel (b, h, w, N)
        g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
        g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
        g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
        g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))
 
        # resampling the features based on the modified coordinates.
        x_q_lt = self._get_x_q(x, q_lt, N)
        x_q_rb = self._get_x_q(x, q_rb, N)
        x_q_lb = self._get_x_q(x, q_lb, N)
        x_q_rt = self._get_x_q(x, q_rt, N)
 
        # bilinear
        x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
                   g_rb.unsqueeze(dim=1) * x_q_rb + \
                   g_lb.unsqueeze(dim=1) * x_q_lb + \
                   g_rt.unsqueeze(dim=1) * x_q_rt
 
        x_offset = self._reshape_x_offset(x_offset, self.num_param)
        out = self.conv(x_offset)
 
        return out
    #https://blog.csdn.net/m0_63774211/category_12289773.html?spm=1001.2014.3001.5482
    # generating the inital sampled shapes for the AKConv with different sizes.
    def _get_p_n(self, N, dtype):
        base_int = round(math.sqrt(self.num_param))
        row_number = self.num_param // base_int
        mod_number = self.num_param % base_int
        p_n_x,p_n_y = torch.meshgrid(
            torch.arange(0, row_number),
            torch.arange(0,base_int))
        p_n_x = torch.flatten(p_n_x)
        p_n_y = torch.flatten(p_n_y)
        if mod_number >  0:
            mod_p_n_x,mod_p_n_y = torch.meshgrid(
                torch.arange(row_number,row_number+1),
                torch.arange(0,mod_number))
 
            mod_p_n_x = torch.flatten(mod_p_n_x)
            mod_p_n_y = torch.flatten(mod_p_n_y)
            p_n_x,p_n_y  = torch.cat((p_n_x,mod_p_n_x)),torch.cat((p_n_y,mod_p_n_y))
        p_n = torch.cat([p_n_x,p_n_y], 0)
        p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)
        return p_n
 
    # no zero-padding
    def _get_p_0(self, h, w, N, dtype):
        p_0_x, p_0_y = torch.meshgrid(
            torch.arange(0, h * self.stride, self.stride),
            torch.arange(0, w * self.stride, self.stride))
 
        p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)
 
        return p_0
 
    def _get_p(self, offset, dtype):
        N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)
 
        # (1, 2N, 1, 1)
        p_n = self._get_p_n(N, dtype)
        # (1, 2N, h, w)
        p_0 = self._get_p_0(h, w, N, dtype)
        p = p_0 + p_n + offset
        return p
 
    def _get_x_q(self, x, q, N):
        b, h, w, _ = q.size()
        padded_w = x.size(3)
        c = x.size(1)
        # (b, c, h*w)
        x = x.contiguous().view(b, c, -1)
 
        # (b, h, w, N)
        index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y
        # (b, c, h*w*N)
        index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)
 
        x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)
 
        return x_offset
 
    # https://blog.csdn.net/m0_63774211/category_12289773.html?spm=1001.2014.3001.5482
    #  Stacking resampled features in the row direction.
    @staticmethod
    def _reshape_x_offset(x_offset, num_param):
        b, c, h, w, n = x_offset.size()
        # using Conv3d
        # x_offset = x_offset.permute(0,1,4,2,3), then Conv3d(c,c_out, kernel_size =(num_param,1,1),stride=(num_param,1,1),bias= False)
        # using 1 × 1 Conv
        # x_offset = x_offset.permute(0,1,4,2,3), then, x_offset.view(b,c×num_param,h,w)  finally, Conv2d(c×num_param,c_out, kernel_size =1,stride=1,bias= False)
        # using the column conv as follow, then, Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias)
        
        x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')
        return x_offset

3.2修改yolo.py

1)首先进行引用

from models.Conv.AKConv import AKConv

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入AKConv

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
            Conv, AConv, ConvTranspose, 
            Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
            RepNCSPELAN4, SPPELAN,AKConv}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]

3.3 yolov9-c-AKConv.yaml

# YOLOv9

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3

   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5

   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7

   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, AKConv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, AKConv, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   
   
   
   # detection head

   # detect
   [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]


http://www.niftyadmin.cn/n/5440174.html

相关文章

69: 偷菜时间表(python)

收藏 难度:一般 标签:暂无标签 题目描述 随着“开心农场”等娱乐游戏风靡互联网,“偷菜”遂瞬间蹿红网络,席卷网民生活。 于是,“你‘偷’了吗”便成为大家见面的招呼语。很快,数百万都市白领成为“偷菜…

Scala--03--变量和数据类型

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 变量和数据类型1.注释2 变量和常量(重点)3 标识符的命名规范4 字符串输出5.IO 输入 输出键盘输入读写文件 IO 6.数据类型(重点&a…

MNN createFromBuffer(一)

系列文章目录 MNN createFromBuffer(一) MNN createRuntime(二) MNN createSession 之 Schedule(三) MNN createSession 之创建流水线后端(四) MNN Session::resize 之流水线编码&am…

js封装SDK 在VUE、小程序、公众号直接调用js调用后端接口(本文以vue项目为例)

1.封装一个js文件msgSdk.js 注意:需要修改这个请求地址 apiServiceAddress ;(function () {if (window.msgSdk) {return}var msgSdk (function () {var m_msgSdk thisvar apiServiceAddress"http://172.12.14.5:8000"this.I_SendHTTPRequest functi…

OpenGL-图像USM锐化

图像USM锐化 为什么要锐化? 图片调整后的颜色应用于原始图像的RGB值,以使得图像看起来更加清晰和/或改变外观。 流程 1、图片高斯模糊 2、获取高斯模糊像素点,根据USM锐化公式计算每个像素点锐化之后的像素 USM公式 image为原图图片 ga…

27-5 文件上传漏洞 -大小写、空格、点、下划线等绕过

环境准备:构建完善的安全渗透测试环境:推荐工具、资源和下载链接_渗透测试靶机下载-CSDN博客 一、大小写绕过(upload-labs 靶场的第5关) 通过查看源码靶场的第5关是黑名单过滤,而且只是过滤了 php 这些,代码中没有转换大小写所以可以使用大小写写绕过,但是windows系统…

Java 数据长度获取方式对比:length属性、length()和size()方法

在Java编程中,我们经常需要获取不同数据类型的长度信息,比如字符串(String)、数组(Array)和集合(Collection)等。针对这些常见数据类型,Java提供了不同的方法和属性来获取它们的长度。下面是每个数据类型获取长度的方式和底层原理的介绍。 1…

美国亚马逊销售无线门铃FCC ID认证怎么办理,需要提供哪些资料?

什么是无线门铃? 无线门铃的英文名称是wireless doorbell,又称无线遥控门铃。常见的无线门铃有不用电池的无线门铃、普通无线门铃及可视无线门铃。无线门铃是利用民用无线技术开发出来的一类门铃。一般无线门铃的传输距离约为40米。无线门铃不需要布线&…