YOLOv5 | 涨点复现!YOLOv5添加BiFPN有效提升目标检测精度

news/2024/7/10 2:43:46 标签: YOLO, 目标检测, 人工智能

目录

                          🚀🚀🚀订阅专栏,更新及时查看不迷路🚀🚀🚀

介绍:

BiFPN

代码实现


⭐欢迎大家订阅我的专栏一起学习⭐

🚀🚀🚀订阅专栏,更新及时查看不迷路🚀🚀🚀

       YOLOv5涨点专栏:http://t.csdnimg.cn/AEFts

YOLOv8涨点专栏:http://t.csdnimg.cn/v0d7y

💡魔改网络、复现论文、优化创新💡

介绍:

模型效率在计算机视觉中变得越来越重要。在本文中,我们系统地研究了用于目标检测的神经网络架构设计选择,并提出了几个提高效率的关键优化。首先,我们提出了一种加权双向特征金字塔网络(BiFPN),它可以轻松快速地进行多尺度特征融合;其次,我们提出了一种复合缩放方法,可以同时统一缩放所有主干网络、特征网络和框/类预测网络的分辨率、深度和宽度。基于这些优化和 EfficientNet 主干,我们开发了一个新的目标检测器系列,称为 EfficientDet,它在各种资源限制下始终实现比现有技术更高的效率。特别是,通过单模型和单尺度,我们的 EfficientDetD7 在 COCO 测试开发上实现了最先进的 52.2 AP,具有 52M 参数和 325B FLOPs1,比以前小 4 至 9 倍,使用的 FLOP 数减少 13 至 42 倍探测器。

BiFPN
BiFPN结构图

特征金字塔网络(FPN)最初被引入来应对这个挑战。FPN通过构建一个多层次的特征金字塔,其中包含从粗到细的特征图。这些特征图具有不同的分辨率,允许模型在多个尺度上进行检测。

然而,传统的FPN存在一个问题,即信息流只能沿着金字塔的一个方向传播,通常是从高分辨率到低分辨率。这意味着在检测物体时,粗糙特征图中的细节信息可能会丢失,从而影响准确性。

BIFPN通过引入双向连接来解决这个问题。它允许特征图之间的信息在多个尺度之间双向传播,这意味着不仅可以从粗糙特征图传播到细粒度特征图,而且反之亦然。这样,模型可以更全面地捕捉到各种尺度下的特征信息,从而提高了目标检测和实例分割任务的性能。

具体来说,BIFPN的原理包括以下几个关键点:

  1. 双向连接:BIFPN引入了特征金字塔层之间的双向连接,允许信息在不同尺度之间双向传播。

  2. 特征融合:在双向连接的基础上,BIFPN执行特征融合操作,将不同尺度的特征图结合起来,以产生更具表征性的特征。

  3. 信息传播:双向连接使得底层特征图可以通过上层特征图获取更高级的语义信息,同时,上层特征图也可以通过底层特征图获得更精确的位置信息。

  4. 多尺度特征:BIFPN产生的特征图具有多个尺度的特征信息,这有助于模型对于不同尺度物体的检测。

总体来说,BIFPN通过引入双向连接和特征融合操作,允许信息在多个尺度之间进行更全面和有效的传播,从而提高了目标检测和实例分割模型的性能。

代码实现

步骤1:在common.py中添加BiFPN模块

将下面BiFPN模块的代码复制粘贴到common.py文件的末尾。

# BiFPN 
# 两个特征图add操作
class BiFPN_Add2(nn.Module):
    def __init__(self, c1, c2):
        super(BiFPN_Add2, self).__init__()
        # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
        # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
        # 从而在参数优化的时候可以自动一起优化
        self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
        self.silu = nn.SiLU()
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)
        return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))
 
 
# 三个特征图add操作
class BiFPN_Add3(nn.Module):
    def __init__(self, c1, c2):
        super(BiFPN_Add3, self).__init__()
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
        self.silu = nn.SiLU()
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  
        # Fast normalized fusion
        return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))

步骤2:在yolo.py文件中加入类名

yolo.py文件parse_model函数中找到 elif m is Conat: 语句,在其后面加上下列语句:

# 添加bifpn_add结构
elif m in [BiFPN_Add2, BiFPN_Add3]:
    c2 = max([ch[x] for x in f])

步骤3:创建自定义yaml文件 

然后将yaml文件中所有Concat换成BiFPN_Add

yaml文件修改后的完整代码如下:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
 
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.1 BiFPN head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, BiFPN_Add2, [256, 256]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, BiFPN_Add2, [128, 128]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 
 
   [-1, 1, Conv, [512, 3, 2]],  
   [[-1, 13, 6], 1, BiFPN_Add3, [256, 256]],  #v5s通道数是默认参数的一半
   [-1, 3, C3, [512, False]],  # 20 
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, BiFPN_Add2, [256, 256]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 
 
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

步骤4:验证是否加入成功

yolo.py文件里,配置我们刚才自定义的yolov5s_BiFPN.yaml

 然后运行yolo.py,得到结果。

 由运行结果可以看到,所有Concat已被换成了BiFPN_Add

这样就算添加成功了。🎉🎉🎉  

步骤5:修改train.py

首先找到train.py文件中的 #Optimizer,加入下列代码:

 

    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
            g0.append(v.weight)
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
            g1.append(v.weight)
        # BiFPN_Concat
        elif isinstance(v, BiFPN_Add2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
            g1.append(v.w)
        elif isinstance(v, BiFPN_Add3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
            g1.append(v.w)

此时,会出现报错提示,原因是我们没有导入相应的包。

接下来,我们就导入相应的包

导入完毕后,我们可以看到:报错消失了!

然后,在train.py文件中找到 parse_opt函数,然后将第二行 '--cfg的default改为 'models/yolov5s_BiFPN.yaml',然后就可以开始进行训练了。

 现在就完全修改成功了,快去试试吧


http://www.niftyadmin.cn/n/5435164.html

相关文章

Lua中文语言编程源码-第六节,更改lmathlib.c 数学库函数, 使Lua加载中文库关键词(与数学库相关)

源码已经更新在CSDN的码库里: git clone https://gitcode.com/funsion/CLua.git 在src文件夹下的lmathlib.c 数学库 函数,Standard mathematical library:表明这个C源文件实现了Lua的标准数学库(Standard mathematical library&…

8-图像缩放

其实,就是开辟一个zoomwidth,zoomheight的内存,再分别赋值即可。 void CDib::Scale(float xZoom, float yZoom) { //指向原图像指针 LPBYTE p_data GetData(); //指向原像素的指针 LPBYTE lpSrc; //指向缩放图像对应像素的指针 LPBYTE lpDs…

arm-linux实现onvif server+WS-UsernameToken令牌验证

目录 一、环境搭建 1、安装openssl 2、安装bison 3、安装flex 二、gsoap下载 三、编译x86版本gsoap 四、编译arm-linux版本gsoap 1、交叉编译openssl 1.1、下载openssl 1.2、交叉编译 2、交叉编译zlib 2.1、下载zlib 2.2、交叉编译 3、交叉编译gsoap 3.1、编译过…

UG NX二次开发(C#)-CAM-采用内部函数获取drill操作的进给

CAM二次开发 第一章 UG NX二次开发(C#)-CAM-采用内部函数获取drill操作的进给 文章目录 CAM二次开发1、前言2、在高版本中打开drill加工模板3、读取drill加工操作3.1 用NXOpen的FindObject实现3.2、通过Collection集合获取3.3 通过选择工序导航器实现(Ufun和NXOpen混合编程…

MIT 6.5840-分布式系统学习记录

课程安排 2023 MIT 6.5840 分布式系统 | 环境搭建与 Lab 1 MapReduce - 知乎 (zhihu.com) lab汇总 MIT 6.5840-分布式系统 Lab1

ChatGPT即将进入金融领域,让我们谈谈其中的风险与收益。

ChatGPT在金融领域的风险与收益分析报告 摘要 ChatGPT的推出引发了全球的广泛关注,其在金融领域的应用前景广阔,但也伴随着一定的风险。本文旨在分析ChatGPT在金融领域可能带来的风险与收益,并提出相应的应对策略。 引言 ChatGPT自推出以…

STM32进阶笔记——FATFS文件系统(下)

本专栏争取每周三更新直到更新完成,期待大家的订阅关注,欢迎互相学习交流。 本文需要一些SD卡和内存管理等前置知识,后续文章会介绍,这里先介绍一下FATFS文件系统。关于FATFS的文章分为上下两篇,上篇主要介绍什么是FAT…

使用Python进行股票市场分析:基于历史数据的统计分析

一、引言 股票市场作为金融市场的重要组成部分,一直是投资者关注的焦点。通过对股票市场的历史数据进行统计分析,可以帮助我们更好地理解市场趋势,为投资决策提供依据。本文将介绍如何使用Python编程语言,对股票市场的历史数据进…