基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---自研CPMS注意力,效果优于CBAM ,助力自动驾驶(二)

 💡💡💡本文主要内容:详细介绍了暗光低光数据集检测整个过程,从数据集到训练模型到结果可视化分析,以及如何优化提升检测性能。

💡💡💡加入 自研CPMS注意力 mAP@0.5由原始的0.682提升至0.689

 1.暗光低光数据集ExDark介绍

       低光数据集使用ExDark,该数据集是一个专门在低光照环境下拍摄出针对低光目标检测的数据集,包括从极低光环境到暮光环境等10种不同光照条件下的图片,包含图片训练集5891张,测试集1472张,12个类别。

1.Bicycle 2.Boat 3.Bottle 4.Bus 5.Car 6.Cat 7.Chair 8.Cup 9.Dog 10.Motorbike 11.People 12.Table

 

细节图:

 

2.基于YOLOv8的暗光低光检测

2.1 修改ExDark_yolo.yaml

path: ./data/ExDark_yolo/  # dataset root dir
train: images/train  # train images (relative to 'path') 1411 images
val: images/val  # val images (relative to 'path') 458 images
#test: images/test  # test images (optional) 937 images


names:
  0: Bicycle
  1: Boat
  2: Bottle
  3: Bus
  4: Car
  5: Cat
  6: Chair
  7: Cup
  8: Dog
  9: Motorbike
  10: People
  11: Table

2.2 开启训练 

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')
    model.train(data='data/ExDark_yolo/ExDark_yolo.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=16,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )

3.结果可视化分析 

YOLOv8 summary: 225 layers, 3012500 parameters, 0 gradients, 8.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 24/24 [00:25<00:00,  1.05s/it]
                   all        737       2404      0.743      0.609      0.682      0.427
               Bicycle        737        129      0.769      0.697      0.764      0.498
                  Boat        737        143       0.69       0.56      0.649      0.349
                Bottle        737        174      0.761      0.587      0.652      0.383
                   Bus        737         62      0.854      0.742      0.808       0.64
                   Car        737        311      0.789      0.672      0.761        0.5
                   Cat        737         95      0.783      0.568      0.661      0.406
                 Chair        737        232      0.725      0.513      0.609      0.363
                   Cup        737        181      0.725       0.53      0.609      0.375
                   Dog        737         94      0.634      0.617      0.628      0.421
             Motorbike        737         91      0.766      0.692       0.78      0.491
                People        737        744      0.789      0.603      0.711      0.398
                 Table        737        148      0.637       0.52      0.553      0.296

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 

PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。 

R_curve.png :召回率与置信度之间关系

results.png

 mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

 预测结果:

4.如何优化模型 

4.1 自研CPMS注意力

YOLOv8独家原创改进:原创自研 | 创新自研CPMS注意力,多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM-CSDN博客

 自研CPMS, 多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM

4.2 对应yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
  - [-1, 1, CPMS, [1024]]  # 10
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 13
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 16 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 22 (P5/32-large)
 
  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 实验结果分析

mAP@0.5由原始的0.682提升至0.689

YOLOv8_CPMS summary: 244 layers, 3200404 parameters, 0 gradients, 8.4 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 12/12 [00:25<00:00,  2.09s/it]
                   all        737       2404      0.723      0.622      0.689      0.434
               Bicycle        737        129      0.724      0.721       0.76      0.475
                  Boat        737        143      0.702      0.609      0.681      0.372
                Bottle        737        174      0.729      0.587      0.627      0.383
                   Bus        737         62      0.801      0.758      0.816      0.636
                   Car        737        311      0.798      0.682      0.776      0.508
                   Cat        737         95      0.744      0.653      0.705      0.456
                 Chair        737        232      0.695      0.534      0.591      0.341
                   Cup        737        181      0.732      0.559      0.674      0.437
                   Dog        737         94      0.532      0.553      0.602       0.39
             Motorbike        737         91      0.795       0.67      0.754      0.497
                People        737        744      0.785      0.622      0.712        0.4
                 Table        737        148      0.634      0.514      0.568      0.311

5.系列篇

系列篇1: DCNv4结合SPPF ,助力自动驾驶

系列篇2:自研CPMS注意力,效果优于CBAM


http://www.niftyadmin.cn/n/5369842.html

相关文章

高可用 k8s 1.29 一键安装脚本, 丝滑至极

博客原文 文章目录 集群配置配置清单集群规划集群网络规划 环境初始化主机配置 配置高可用ApiServer安装 nginx安装 Keepalived 安装脚本需要魔法的脚本不需要魔法的脚本配置自动补全加入其余节点 验证集群 集群配置 配置清单 OS&#xff1a; ubuntu 20.04kubernetes&#xf…

Unity引擎学习笔记之【动画层操作】

动画层Animation Layer 一、动画器的三个基本状态 1. Any State&#xff08;任意状态&#xff09; “Any State”&#xff08;任意状态&#xff09;&#xff1a;这个状态可以用来连接多个状态机的任意状态转换。在动画控制器中&#xff0c;你可以使用“Any State”作为过渡条…

鸿蒙开发-UI-图形-图片

鸿蒙开发-UI-组件 鸿蒙开发-UI-组件2 鸿蒙开发-UI-组件3 鸿蒙开发-UI-气泡/菜单 鸿蒙开发-UI-页面路由 鸿蒙开发-UI-组件导航-Navigation 鸿蒙开发-UI-组件导航-Tabs 文章目录 一、基本概念 二、图片资源加载 1. 存档图类型数据源 2.多媒体像素图 三、显示矢量图 四、图片…

C++中的作用域

在C中&#xff0c;作用域是指程序中变量、函数和其他命名实体的可见性和可访问性范围。作用域规定了在代码中的哪些位置可以引用或使用特定的标识符。C中有多种类型的作用域&#xff0c;包括全局作用域、局部作用域和命名空间作用域。 全局作用域&#xff1a; 全局作用域是在整…

Vue-56、Vue技术路由的使用

路由 1、理解&#xff1a;一个路由&#xff08;route&#xff09;就是一种映射关系&#xff08;key-value&#xff09;&#xff0c;多个路由需要路由器&#xff08;router&#xff09;进行管理。 2、前端路由&#xff1a;key是路径&#xff0c;value是组件 1、基本使用 vue…

PMP考试之20240208

1、生物制药公司ClinicaLabs的一位项目经理打算与她的经理讨论为其团队无法执行的复杂活动获取额外资源的问题。一旦活动完成&#xff0c;这些资源将立即投入项目。在这种情况下&#xff0c;项目经理最需要以下哪项技能&#xff1f; A.确定资源需求的规划技能 B.使经理相信她…

gtkmm 与 Cambalache 与 Gtk::Builder (新手向)_

文章目录 前言Cambalache检查Xml.cpp文件如何写才能显示UI首先creat获取ui里的对象显示 前言 新手刚刚使用时的笔记 Cambalache检查Xml 窗口右键inspect UI Definition切换到Xml视图, 可以全选复制粘贴到你的ui文件里, Cambalache 只能保存为.cmb工程文件, 导出也不知道导出…

Quartus工程的qsf配置约束文件介绍

一、qsf文件概述 qsf&#xff1a;Quartus Setting File&#xff0c;是Quartus工程的配置文件&#xff1b; 包含一个Quartus工程的所有约束&#xff0c;包括工程的软件版本信息、FPGA器件信息、引脚约分配、引脚电平分配&#xff0c;编译约束和用于Classic TimingAnalyzer的时…