037、目标检测-SSD实现

news/2024/7/10 2:44:07 标签: 目标检测, 人工智能, 计算机视觉

之——简单实现

目录

之——简单实现

杂谈

正文

1.类别预测层

2.边界框预测

3.多尺度输出联结做预测(提高预测效率)

4.多尺度实现

5.基本网络块

6.完整模型


杂谈

        原理查看:037、目标检测-算法速览-CSDN博客


正文

1.类别预测层

         类别预测的实现,锚框类别数num_classes+1背景:

        该图层使用填充为1的3×3的卷积层。此卷积层的输入和输出的宽度和高度保持不变,只是改变了通道数: 

import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


def cls_predictor(num_inputs, num_anchors, num_classes):
    return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),
                     kernel_size=3, padding=1)

2.边界框预测

        把边界框也看做一个预测问题,要预测的值就是两个坐标四个值,所以输出通道为4*num_anchors:

def bbox_predictor(num_inputs, num_anchors):
    return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)


3.多尺度输出联结做预测(提高预测效率)

        单发多框检测使用多尺度特征图来生成锚框并预测其类别和偏移量。 在不同的尺度下,特征图的形状或以同一单元为中心的锚框的数量可能会有所不同。 因此,不同尺度下预测输出的形状可能会有所不同。

def forward(x, block):
    return block(x)

Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
Y1.shape, Y2.shape

        通道维包含中心相同的锚框的预测结果。我们首先将通道维移到最后一维。 因为不同尺度下批量大小仍保持不变,我们可以将预测结果转成二维的(批量大小,高×宽×通道数)的格式,以方便之后在维度1上的连结 :

def flatten_pred(pred):
    return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)

def concat_preds(preds):
    return torch.cat([flatten_pred(p) for p in preds], dim=1)

         


4.多尺度实现

        为了在多个尺度下检测目标,我们在下面定义了高和宽减半块down_sample_blk,该模块将输入特征图的高度和宽度减半。

def down_sample_blk(in_channels, out_channels):
    blk = []
    for _ in range(2):
        blk.append(nn.Conv2d(in_channels, out_channels,
                             kernel_size=3, padding=1))
        blk.append(nn.BatchNorm2d(out_channels))
        blk.append(nn.ReLU())
        in_channels = out_channels
    blk.append(nn.MaxPool2d(2))
    return nn.Sequential(*blk)

        跟当时VGG的实现极其类似,效果:

forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape


5.基本网络块

        基本网络块用于从输入图像中抽取特征。 为了计算简洁,我们构造了一个小的基础网络,该网络串联3个高和宽减半块,并逐步将通道数翻倍。 给定输入图像的形状为256×256,此基本网络块输出的特征图形状为32×32:

def base_net():
    blk = []
    num_filters = [3, 16, 32, 64]
    for i in range(len(num_filters) - 1):
        blk.append(down_sample_blk(num_filters[i], num_filters[i+1]))
    return nn.Sequential(*blk)

forward(torch.zeros((2, 3, 256, 256)), base_net()).shape

6.完整模型

        完整的单发多框检测模型由五个模块组成。每个块生成的特征图既用于生成锚框,又用于预测这些锚框的类别和偏移量。在这五个模块中,第一个是基本网络块,第二个到第四个是高和宽减半块,最后一个模块使用全局最大池化将高度和宽度都降到1

def get_blk(i):
    if i == 0:
        blk = base_net()
    elif i == 1:
        blk = down_sample_blk(64, 128)
    elif i == 4:
        blk = nn.AdaptiveMaxPool2d((1,1))
    else:
        blk = down_sample_blk(128, 128)
    return blk

        每个块的前向传播:为每个块定义前向传播。与图像分类任务不同,此处的输出包括:CNN特征图Y;在当前尺度下根据Y生成的锚框;预测的这些锚框的类别和偏移量(基于Y):

def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):
    Y = blk(X)
    anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)
    cls_preds = cls_predictor(Y)
    bbox_preds = bbox_predictor(Y)
    return (Y, anchors, cls_preds, bbox_preds)

        一个较接近顶部的多尺度特征块是用于检测较大目标的,因此需要生成更大的锚框。 在上面的前向传播中,在每个多尺度特征块上,我们通过调用的multibox_prior函数的sizes参数传递两个比例值的列表。

sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],
         [0.88, 0.961]]
ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1

        汇总:

class TinySSD(nn.Module):
    def __init__(self, num_classes, **kwargs):
        super(TinySSD, self).__init__(**kwargs)
        self.num_classes = num_classes
        idx_to_in_channels = [64, 128, 128, 128, 128]
        for i in range(5):
            # 即赋值语句self.blk_i=get_blk(i)
            setattr(self, f'blk_{i}', get_blk(i))
            setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],
                                                    num_anchors, num_classes))
            setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],
                                                      num_anchors))

    def forward(self, X):
        anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5
        for i in range(5):
            # getattr(self,'blk_%d'%i)即访问self.blk_i
            X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(
                X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],
                getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))
        anchors = torch.cat(anchors, dim=1)
        cls_preds = concat_preds(cls_preds)
        cls_preds = cls_preds.reshape(
            cls_preds.shape[0], -1, self.num_classes + 1)
        bbox_preds = concat_preds(bbox_preds)
        return anchors, cls_preds, bbox_preds

        训练:

batch_size = 32
train_iter, _ = d2l.load_data_bananas(batch_size)


device, net = d2l.try_gpu(), TinySSD(num_classes=1)
trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)

#损失函数和评价函数
cls_loss = nn.CrossEntropyLoss(reduction='none')
bbox_loss = nn.L1Loss(reduction='none')

def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
    batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2]
    cls = cls_loss(cls_preds.reshape(-1, num_classes),
                   cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)
    bbox = bbox_loss(bbox_preds * bbox_masks,
                     bbox_labels * bbox_masks).mean(dim=1)
    return cls + bbox

def cls_eval(cls_preds, cls_labels):
    # 由于类别预测结果放在最后一维,argmax需要指定最后一维。
    return float((cls_preds.argmax(dim=-1).type(
        cls_labels.dtype) == cls_labels).sum())

def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
    return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())





#训练
num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                        legend=['class error', 'bbox mae'])
net = net.to(device)
for epoch in range(num_epochs):
    # 训练精确度的和,训练精确度的和中的示例数
    # 绝对误差的和,绝对误差的和中的示例数
    metric = d2l.Accumulator(4)
    net.train()
    for features, target in train_iter:
        timer.start()
        trainer.zero_grad()
        X, Y = features.to(device), target.to(device)
        # 生成多尺度的锚框,为每个锚框预测类别和偏移量
        anchors, cls_preds, bbox_preds = net(X)
        # 为每个锚框标注类别和偏移量
        bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)
        # 根据类别和偏移量的预测和标注值计算损失函数
        l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
                      bbox_masks)
        l.mean().backward()
        trainer.step()
        metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),
                   bbox_eval(bbox_preds, bbox_labels, bbox_masks),
                   bbox_labels.numel())
    cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]
    animator.add(epoch + 1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on '
      f'{str(device)}')

         结果:


http://www.niftyadmin.cn/n/5194415.html

相关文章

Office文件在线预览大全-Word文档在线预览的实现方法-OFD文档在线预览-WPS文件在线预览

Office文件在线预览大全-Word文档在线预览的实现方法-OFD文档在线预览-WPS文件在线预览 Office文件在线预览指的是文件在浏览器中可以直接预览查看,不需要安装任何插件就可以实现文档的在线预览功能、打印功能、文件转PDF功能、文件转OFD功能、文档内容提取功能、自…

年货FPS大作,艾尔莎EA B450M-E和你玩转《使命召唤20》

说到动视旗下的《使命召唤》系列,相信大家都不陌生,它以出色爽快的游戏体验以及精良的画面著称,而且每年一部的更新节奏也是如今为数不多的“年货”游戏之一了。时至今日,该系列已经来到了第20部作品,也就是《使命召唤…

HR人才测评,提高招聘效率降低用人风险

随着社会的不断进步,越来越多的企业在人力资源管理中,引入人才测评工具。人才是构成一个企业的基础,是企业不断发展的保障,同时,人才也是一个企业的核心竞争力之一。所以,人才的素质对一个企业至关重要。现…

大模型的视觉能力

摘要: 计算机视觉引领了人工智能中深度学习的采用,这表明在大型注释数据集上预训练的模型可以转移到许多下游设置。现在,在网络规模的原始数据而不是策划的数据集上进行预训练,基础大模型在计算机视觉中正在崛起。这些模型…

airlearning-ue4安装的踩坑记录

最近要安装airlearning-ue4,用于实现无人机仿真环境,该项目地址为:GitHub - harvard-edge/airlearning-ue4: Environment Generator for Air Learning Project. This version is build on top of UE4 game engine 由于这个项目已经完成好几年…

力扣labuladong——一刷day41

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣236. 二叉树的最近公共祖先二、力扣1676. 二叉树的最近公共祖先 IV三、力扣1644. 二叉树的最近公共祖先 II四、力扣235. 二叉搜索树的最近公共祖先五、…

Hive语法,函数--学习笔记

1,排序处理 1.1cluster by排序 ,在Hive中使用order by排序时是全表扫描,且仅使用一个Reduce完成。 在海量数据待排序查询处理时,可以采用【先分桶再排序】的策略提升效率。此时, 就可以使用cluster by语法。 cluster…

矩阵的模和内积

模和内积 向量 设存在一个向量 X { x 1 , x 2 , x 3 … x n } T X\{x_1,x_2,x_3\dots x_n\}^T X{x1​,x2​,x3​…xn​}T P范数 ∣ ∣ X ∣ ∣ P ∑ i 1 n ∣ x i ∣ p p ||X||_P\sqrt[p]{\sum_{i1}^{n}{|x_i|}^p} ∣∣X∣∣P​pi1∑n​∣xi​∣p ​ 1范数(曼…