无需标注海量数据,目标检测新范式OVD

news/2024/7/10 2:44:56 标签: 目标检测, 人工智能, 计算机视觉

图片

       当前大火的多模态GPT-4在视觉能力上只具备目标识别的能力,还无法完成更高难度的目标检测任务。而识别出图像或视频中物体的类别、位置和大小信息,是现实生产中众多人工智能应用的关键,例如自动驾驶中的行人车辆识别、安防监控应用中的人脸锁定、医学图像分析中的肿瘤定位等等
       已有的目标检测方法如YOLO系列、R-CNN系列等目标检测算法在科研人员的不断努力下已经具备很高的目标检测精度与效率,但由于现有方法需要在模型训练前就定义好待检测目标的集合 (闭集),导致它们无法检测训练集合之外的目标,比如个被训练用于检测人脸的模型就不能用于检测车辆;另外,现有方法高度依赖人工标注的数据,当需要增加或者修改待检测的目标类别时,一方面需要对训练数据进行重新标注,另一方面需要对模型进行重新训练,既费时又费力。
        一个可能的解决方案是,收集海量的图像,并人工标注Box信息与语义信息,但这将需要极高的标注成本,而且使用海量数据对检测模型进行训练也对科研工作者提出了严峻的挑战,如数据的长尾分布问题与人工标注的质量不稳定等因素都将影响检测模型的性能表现。发表于CVPR 2021的文章OVR-CNN提出了一种全新的目标检测范式:开放词集目标检测 (Open-Vocabulary Detection,OVD,亦称为开放世界目标检测),来应对上文提到的问题,即面向开放世界未知物体的检测场景。OVD由于能够在无需人工扩充标注数据量的情形下识别并定位任意数量和类别目标的能力,自提出后吸引了学术界与工业界的持续关注,也为经典的目标检测任务带来了新的活力与新的挑战,有望成为目标检测的未来新范式。
       具体地,OVD技术不需要人工标注海量的图片来增强检测模型对未知类别的检测能力,而是通过将具有良好泛化性的无类别(class-agnostic) 区域检测器与经过海量无标注数据训练的跨模态模型相结合,通过图像区域特征与待检测目标的描述性文字进行跨模态对齐来扩展目标检测模型对开放世界目标的理解能力。
       跨模态和多模态大模型工作近期的发展非常迅速,如CLIP、ALIGN与R2D2等,而它们的发展也促进了OVD的诞生与OVD领域相关工作的快速迭代与进化。OVD技术涉及两大关键问题的解决: 1)如何提升区域(Region)信息与跨模态大模型之间的适配;2)如何提升泛类别目标检测器对新类别的泛化能力。从这两个角度出发,下面将详细介绍一些OVD领域的相关工作。 

图片

OVD基本流程示意

一、OVD的基础概念:

OVD的使用主要涉及到few-shot和zero-shot两大类场景few-shot 是指有少量人工标注训练样本的目标类别,zero-shot则是指不存在任何人工标注训练样本的目标类别。在常用的学术评测数据集COCO、LVIS上,数据集会被划分为Base类和Novel类,其中Base类对应few-shot场景,Novel类对应zero-shot场景。如COCO数据集包含65种类别,常用的评测设定是Base集包含48种类别,few-shot训练中只使用这48个类别。Novel集包含17种类别,在训练时完全不可见。测试指标主要参考Novel类的AP50数值进行比较。

论文1:Open-Vocabulary Object Detection Using Captions

图片

  • 论文地址:https://arxiv.org/pdf/2011.10678.pdf

  • 代码地址:https://github.com/alirezazareian/ovr-cnn

    OVR-CNN是CVPR 2021的Oral-Paper,也是OVD领域的开山之作。它的二阶段训练范式,影响了后续很多的OVD工作。如下图所示,第一阶段主要使用 imagecaption pairs 对视觉编码器进行预训练,其中借助BERT(参数固定)来生成词掩码,并与加载ImageNet预训练权重的ResNet50进行弱监督的Grounding匹配作者认为弱监督会让匹配陷入局部最优,于是加入多模态Transformer进行词掩码预测来增加鲁棒性。第二阶段的训练流程与Faster-RCNN类似,区别点在于,特征提取的Backbone来自于第一阶段预训练得到的ResNet50的1-3层,RPN后依然使用ResNet50的第四层进行特征加工,随后将特征分别用于Box回归与分类预测。分类预测是OVD任务区别于常规检测的关键标志,OVR-CNN中将特征输入一阶段训练得到的V2L模块参数固定的图向量转词向量模块)得到一个图文向量,随后与标签词向量组进行匹配,对类别进行预测。在二阶段训练中,主要使用Base类对检测器模型进行框回归训练与类别匹配训练。由于V2L模块始终固定,配合目标检测模型定位能力向新类别迁移,使得检测模型能够识别并定位到全新类别的目标。

图片

如下图所示,OVR-CNN在COCO数据集上的表现远超之前的Zero-shot目标检测算法。 

图片

  • 论文地址:https://arxiv.org/abs/2112.09106

  • 代码地址:https://github.com/microsoft/RegionCLIP

OVR-CNN中使用BERT与多模态Transfomer进行image-text pairs 预训练,但随着跨模态大模型研究的兴起,科研工作者开始利用CLIP,ALIGN等更强大的跨模态大模型对OVD任务进行训练。检测器模型本身主要针对Proposals,即区域信息进行分类识别,发表于CVPR 2022的RegionCLIP发现当前已有的大模型,如CLIP对裁剪区域的分类能力远低于对原图本身的分类能力,为了改进这一点RegionCLIP提出了一个全新的两阶段OVD方案。

第一阶段,数据集主要使用CC3M,COCO-caption等图文匹配数据集进行区域级别的蒸馏预训练。具体地:
1.将原先存在于长文本中的词汇进行提取,组成Concept Pool,进一步形成一组
关于Region的简单描述,用于训练。
2.利用基于LVIS预训练的RPN提取Proposal Regions,并利用原始CLIP对提取到的不同Region与准备好的描述进行匹配分类,并进一步组装成伪造的语义标签
3.将准备好的Proposal Regions与语义标签在新的CLIP模型上进行Region-text对比学习,进而得到一个专精于Region信息的CLIP模型。
4.在预训练中,新的CLIP模型还会通过蒸馏策略学习原始CLIP的分类能力,以及进行全图级别的image-text对比学习,来维持新的CLIP模型对完整图像的表达能力。
第二阶段,将得到的预训练模型在检测模型上进行迁移学习。 

 

RegionCLIP进一步拓展了已有跨模态大模型在常规检测模型上的表征能力,进而取得了更加出色的性能,如下图所示,RegionCLIP相比OVR-CNN在Novel类别上取得了较大提升。RegionCLIP通过一阶段的预训练有效地的提升了区域(Region)信息与多模态大模型之间的适应能力,但CORA认为其使用更大参数规模的跨模态大模型进行一阶段训练时,训练成本将会非常高昂。 

图片

论文3:CORA: Adapting CLIP for Open-Vocabulary Detection with Region Prompting and Anchor Pre-Matching

图片

  • 论文地址:https://arxiv.org/abs/2303.13076

  • 代码地址:https://github.com/tgxs002/CORA

CORA已被收录于CVPR 2023,为了克服其所提出当前OVD任务所面临的两个阻碍,设计了一个类DETR的OVD模型。如其文章标题所示,模型主要包含了RegionPrompting与Anchor Pre-Matching两个策略。前者通过Prompt技术来优化基于CLIP的区域分类器所提取的区域特征,进而缓解整体与区域的分布差距,后者通过DETR检测方法中的锚点预匹配策略来提升OVD模型对新类别物体定位能力的泛化性。 

CLIP原始视觉编码器的整体图像特征与区域特征之间存在分布差距,进而导致检测器的分类精度较低 (这一点与RegionCLIP的出发点类似)。因此,CORA提出Region Prompting来适应CLIP图像编码器,提高对区域信息的分类性能。具体地,首先通过CLIP编码器的前3层将整幅图像编码成一个特征映射,然后由RolAlign生成锚点框或预测框,并将其合并成区域特征。随后由CLIP图像编码器的第四层进行编码。为了缓解CLIP图像编码器的全图特征图与区域特征之间存在分布差距,设置了可学习的Region Prompts并与第四层输出的特征进行组合,进而生成最终的区域特征用来与文本特征进行匹配,匹配损失使用了朴素的交叉熵损失,目训练过程中与CLIP相关的参数模型全都冻结。 

图片

相比于RegionCLIP,CORA在COCO数据集上进一步提升了2.4的AP50数值。


二、总结与展望


        OVD技术不仅与当前流行的跨/多模态大模型的发展紧密联系,同时也承接了过去科研工作者对目标检测领域的技术累积,是传统AI技术与面向通用AI能力研究的一次成功衔接。OVD更是一项面向未来的全新目标检测技术,可以预料到的是,OVD可以检测并定位任意目标的能力,也将反过来推进多模态大模型的进一步发展,有希望成为多模态AGI发展中的重要基石。当下,多模态大模型的训练数据来源是网络上的海量粗糙信息对,即文本图像对或文本语音对。若利用OVD技术对原本粗糙的图像信息进行精准定位,并辅助预测图像的语义信息来筛选语料,将会进一步提升大模型预训练数据的质量,进而优化大模型的表征能力与理解能力。   
       一个很好的例子便是SAM(Segment Anything),SAM不仅让科研工作者们看到了通用视觉大模型未来方向,也引发了很多思考。值得注意的是,OVD技术可以很好的接入SAM,来增强SAM的语义理解能力,自动的生成SAM需要的box信息从而进一步解放人力。同样的对于AIGC(人工智能生成内容),OVD技术同样可以增强与用户之间的交互能力,如当用户需要指定一张图片的某一个目标进行变化或对该目标生成一句描述的时候,可以利用OVD的语言理解能力与OVD对未知目标检测的能力实现对用户描述对象的精准定位,进而实现更高质量的内容生成。当下OVD领域的相关研究蓬勃发展,OVD技术对未来通用AI大模型能够带来的改变值得期待。 


http://www.niftyadmin.cn/n/5161313.html

相关文章

在HTML单页面中,使用Bootstrap框架的多选框如何提交数据

1.引入Bootstrap CSS和JavaScript文件&#xff1a;确保在HTML页面的标签内引入Bootstrap的CSS和JavaScript文件。可以使用CDN链接或者下载本地文件。 <link rel"stylesheet" href"https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css&q…

安克创新音频算法工程师(应届生)招聘

职位描述&#xff1a; 负责音频处理算法的研发和优化&#xff0c;包括但不限于噪声抑制、回声消除、声反馈抑制、音效、声纹、唤醒、指令词识别等。 持续跟进国际前沿技术方向&#xff0c;预研端侧可落地的音频技术&#xff0c;打造技术影响力。 对音频处理系统进行模拟和实验…

盈科视控荣获创响中国大赛第四名

近日&#xff0c;随着2023“创响中国”安徽省创新创业大赛省内赛区复赛的举办完成&#xff0c;60个项目从6个专项组中脱颖而出。 盈科视控凭借其【IC 载板及先进 PCB 智慧工厂服务商】参赛项目&#xff0c;荣获大赛第四名。 本次大赛由安徽省发改委、安徽省财政厅、合肥市人民…

ES6的基础用法

本文会着重讲解es6&#xff0c;帮助大家熟悉es6和掌握es6的写法 1&#xff0c;let 没有变量提升&#xff0c;使用变量在变量定义之前&#xff0c;这点和var有很大区别 不允许重复声明 只在块级作用域里有效 暂时性死区 console.log(a) //报错&#xff0c;因为在未定义前调用l…

软考高级之132个工具和技术

分类 工具与技术 描述 数据收集 头脑风暴 在短时间内获得大量创意&#xff0c;适用于团队环境&#xff0c;需要引导者引导&#xff08;过程中可以天马行空&#xff0c;不要打断&#xff09; 包括&#xff1a;头脑风暴、头脑写作 头脑写作&#xff1a;在开始小组创意讨论之…

【python海洋专题三十八】海洋指数画法--折线图样式二

【python海洋专题三十八】海洋指数画法–折线图样式二 数据&#xff1a;AMO_index 图像展示&#xff1a; 图片 往期推荐 图片 【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件 【python海洋专题二】读取水深nc文件并水深地形图 【python海洋专题三】图像…

【机器学习】六、概率图模型

今天我们对概率图模型&#xff08;Probabilistic Graphical Model&#xff0c;PGM&#xff09;做一个总结。 模型表示 概率图模型&#xff0c;是指一种用图结构来描述多元随机变量之间条件独立关系的概率模型。 它提出的背景是为了更好研究复杂联合概率分布的数据特征&#x…

Tomat的默认servlet(DefaultServlet)

https://tomcat.apache.org/tomcat-10.1-doc/default-servlet.html DefaultServlet 用来处理对静态资源的请求、以及罗列目录下的内容&#xff08;前提是配置了允许罗列&#xff09;。 DefaultServlet 是全局声明的&#xff0c;在$CATALINA_BASE/conf/web.xml中声明&#xff0…