yolov8 opencv模型部署(C++版)

news/2024/7/9 23:46:13 标签: yolov8, opencv, c++, 深度学习, 目标检测, 计算机视觉

yolov8_opencvC__0">yolov8 opencv模型部署(C++ 版)

使用opencv推理yolov8模型,仅依赖opencv,无需其他库,以yolov8s为例子,注意:

  • 使用opencv4.8.0 !
  • 使用opencv4.8.0 !
  • 使用opencv4.8.0 !
    如果你使用别的版本,例如opencv4.5,可能会出现以下错误。
    请添加图片描述

yolov8_8">一、安装yolov8

conda create -n yolov8 python=3.9 -y
conda activate yolov8
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

二、导出onnx

导出onnx格式模型的时候,注意,如果你是自己训练的模型,只需要把以下代码中yolov8s.pt修改为自己的模型即可,如best.pt。如果是下面代码中默认的模型,并且你没有下载到本地,系统会自动下载,我这里在文章末尾提供了下载链接。

将以下代码创建、拷贝到yolov8根目录下。

具体代码my_export.py:

from ultralytics import YOLO
# Load a model
model = YOLO('yolov8s.pt')  # load an official model
# Export the model
model.export(format='onnx', imgsz=[480, 640], opset=12)

执行导出命令:

python my_export.py

输出如下图信息,表明onnx格式的模型被成功导出,保存在my_export.py同一级目录。
请添加图片描述

opencv_CPPonnx_31">三、基于opencv CPP推理onnx

使用opencv4.8.0,linux和windows都可以,下面以windows为例子。

以下是主函数文件main.cpp:

#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "inference.h"
using namespace std;
using namespace cv;

int main(int argc, char **argv)
{
    bool runOnGPU = false;

    // 1. 设置你的onnx模型
    // Note that in this example the classes are hard-coded and 'classes.txt' is a place holder.
    Inference inf("D:/CodePython/ultralytics/yolov8s.onnx", cv::Size(640, 480), "classes.txt", runOnGPU); // classes.txt 可以缺失

    // 2. 设置你的输入图片
    std::vector<std::string> imageNames;
    imageNames.push_back("bus.jpg");
    //imageNames.push_back("zidane.jpg");

    for (int i = 0; i < imageNames.size(); ++i)
    {
        cv::Mat frame = cv::imread(imageNames[i]);

        // Inference starts here...
        std::vector<Detection> output = inf.runInference(frame);

        int detections = output.size();
        std::cout << "Number of detections:" << detections << std::endl;

        // feiyull
        // 这里需要resize下,否则结果不对
        cv::resize(frame, frame, cv::Size(480, 640));

        for (int i = 0; i < detections; ++i)
        {
            Detection detection = output[i];

            cv::Rect box = detection.box;
            cv::Scalar color = detection.color;

            // Detection box
            cv::rectangle(frame, box, color, 2);

            // Detection box text
            std::string classString = detection.className + ' ' + std::to_string(detection.confidence).substr(0, 4);
            cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
            cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);

            cv::rectangle(frame, textBox, color, cv::FILLED);
            cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
        }
        cv::imshow("Inference", frame);
        cv::waitKey(0);
        cv::destroyAllWindows();
    }
}

以下是运行效果图:
请添加图片描述
其他依赖文件:inference.h、inference.cpp
inference.h:

#ifndef INFERENCE_H
#define INFERENCE_H

// Cpp native
#include <fstream>
#include <vector>
#include <string>
#include <random>

// OpenCV / DNN / Inference
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>

struct Detection
{
    int class_id{0};
    std::string className{};
    float confidence{0.0};
    cv::Scalar color{};
    cv::Rect box{};
};

class Inference
{
public:
    Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape = {640, 640}, const std::string &classesTxtFile = "", const bool &runWithCuda = true);
    std::vector<Detection> runInference(const cv::Mat &input);

private:
    void loadClassesFromFile();
    void loadOnnxNetwork();
    cv::Mat formatToSquare(const cv::Mat &source);

    std::string modelPath{};
    std::string classesPath{};
    bool cudaEnabled{};

    std::vector<std::string> classes{"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"};

    cv::Size2f modelShape{};

    float modelConfidenceThreshold {0.25};
    float modelScoreThreshold      {0.45};
    float modelNMSThreshold        {0.50};

    bool letterBoxForSquare = true;

    cv::dnn::Net net;
};

#endif // INFERENCE_H

inference.cpp

#include "inference.h"

Inference::Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape, const std::string &classesTxtFile, const bool &runWithCuda)
{
    modelPath = onnxModelPath;
    modelShape = modelInputShape;
    classesPath = classesTxtFile;
    cudaEnabled = runWithCuda;

    loadOnnxNetwork();
    // loadClassesFromFile(); The classes are hard-coded for this example
}

std::vector<Detection> Inference::runInference(const cv::Mat &input)
{
    cv::Mat modelInput = input;
    if (letterBoxForSquare && modelShape.width == modelShape.height)
        modelInput = formatToSquare(modelInput);

    cv::Mat blob;
    cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false);
    net.setInput(blob);

    std::vector<cv::Mat> outputs;
    net.forward(outputs, net.getUnconnectedOutLayersNames());

    int rows = outputs[0].size[1];
    int dimensions = outputs[0].size[2];

    bool yolov8 = false;
    // yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c])
    // yolov8 has an output of shape (batchSize, 84,  8400) (Num classes + box[x,y,w,h])
    if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8)
    {
        yolov8 = true;
        rows = outputs[0].size[2];
        dimensions = outputs[0].size[1];

        outputs[0] = outputs[0].reshape(1, dimensions);
        cv::transpose(outputs[0], outputs[0]);
    }
    float *data = (float *)outputs[0].data;

    float x_factor = modelInput.cols / modelShape.width;
    float y_factor = modelInput.rows / modelShape.height;

    std::vector<int> class_ids;
    std::vector<float> confidences;
    std::vector<cv::Rect> boxes;

    for (int i = 0; i < rows; ++i)
    {
        if (yolov8)
        {
            float *classes_scores = data+4;

            cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
            cv::Point class_id;
            double maxClassScore;

            minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);

            if (maxClassScore > modelScoreThreshold)
            {
                confidences.push_back(maxClassScore);
                class_ids.push_back(class_id.x);

                float x = data[0];
                float y = data[1];
                float w = data[2];
                float h = data[3];

                int left = int((x - 0.5 * w) * x_factor);
                int top = int((y - 0.5 * h) * y_factor);

                int width = int(w * x_factor);
                int height = int(h * y_factor);

                boxes.push_back(cv::Rect(left, top, width, height));
            }
        }
        else // yolov5
        {
            float confidence = data[4];

            if (confidence >= modelConfidenceThreshold)
            {
                float *classes_scores = data+5;

                cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
                cv::Point class_id;
                double max_class_score;

                minMaxLoc(scores, 0, &max_class_score, 0, &class_id);

                if (max_class_score > modelScoreThreshold)
                {
                    confidences.push_back(confidence);
                    class_ids.push_back(class_id.x);

                    float x = data[0];
                    float y = data[1];
                    float w = data[2];
                    float h = data[3];

                    int left = int((x - 0.5 * w) * x_factor);
                    int top = int((y - 0.5 * h) * y_factor);

                    int width = int(w * x_factor);
                    int height = int(h * y_factor);

                    boxes.push_back(cv::Rect(left, top, width, height));
                }
            }
        }

        data += dimensions;
    }

    std::vector<int> nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);

    std::vector<Detection> detections{};
    for (unsigned long i = 0; i < nms_result.size(); ++i)
    {
        int idx = nms_result[i];

        Detection result;
        result.class_id = class_ids[idx];
        result.confidence = confidences[idx];

        std::random_device rd;
        std::mt19937 gen(rd());
        std::uniform_int_distribution<int> dis(100, 255);
        result.color = cv::Scalar(dis(gen),
                                  dis(gen),
                                  dis(gen));

        result.className = classes[result.class_id];
        result.box = boxes[idx];

        detections.push_back(result);
    }

    return detections;
}

void Inference::loadClassesFromFile()
{
    std::ifstream inputFile(classesPath);
    if (inputFile.is_open())
    {
        std::string classLine;
        while (std::getline(inputFile, classLine))
            classes.push_back(classLine);
        inputFile.close();
    }
}

void Inference::loadOnnxNetwork()
{
    net = cv::dnn::readNetFromONNX(modelPath);
    if (cudaEnabled)
    {
        std::cout << "\nRunning on CUDA" << std::endl;
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
        net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
    }
    else
    {
        std::cout << "\nRunning on CPU" << std::endl;
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
        net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
    }
}

cv::Mat Inference::formatToSquare(const cv::Mat &source)
{
    int col = source.cols;
    int row = source.rows;
    int _max = MAX(col, row);
    cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
    source.copyTo(result(cv::Rect(0, 0, col, row)));
    return result;
}

完整代码+数据下载:
链接:https://pan.baidu.com/s/1XcgPSzxFhgxYEONum3dJFA?pwd=xcof
提取码:xcof


http://www.niftyadmin.cn/n/5061405.html

相关文章

【优秀学员统计】python实现-附ChatGPT解析

1.题目 优秀学员统计 知识点排序统计编程基础 时间限制: 1s 空间限制: 256MB 限定语言:不限 题目描述: 公司某部门软件教导团正在组织新员工每日打卡学习活动,他们开展这项学习活动已经一个月了,所以想统计下这个月优秀的打卡员工。每个员工会对应一个id,每天的打卡记录记录…

测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)

文章目录 一、任务描述二、指标分析2.1 TP/FP/FN/TN2.2 精准率2.3 召回率 三、接口处理四、数据集处理五、开始计算指标五、实用工具5.1 移动文件5.2 可视化JSON标签5.3 可视化TXT标签 一、任务描述 通过给定的算法接口&#xff0c;对算法的输出&#xff08;置信度、检测框、告…

BUUCTF-WEB-刷题记录

题目地址 https://buuoj.cn/challenges[HITCON 2017]SSRFme 代码理解 进入主页后发现是代码审计/ escapeshellarg — 把字符串转码为可以在 shell 命令里使用的参数— 抑制错误输出 mkdir — 创建目录 chdir 更改目录 shell_exec — 通过 shell 环境执行命令&#x…

JavaSE学习之--抽象类和接口

&#x1f495;"没有眼泪我们就会迷路&#xff0c;彻底变成石头&#xff0c;我们的心会变成冰凌&#xff0c;吻会变成冰块。"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;JavaSE学习之--抽象类和接口 一.抽象类 1.抽象类的定义 我们知道&#x…

[NOIP2011 提高组] 选择客栈

[NOIP2011 提高组] 选择客栈 题目描述 丽江河边有 n n n 家很有特色的客栈&#xff0c;客栈按照其位置顺序从 1 1 1 到 n n n 编号。每家客栈都按照某一种色调进行装饰&#xff08;总共 k k k 种&#xff0c;用整数 0 ∼ k − 1 0 \sim k-1 0∼k−1 表示&#xff09;&am…

一维数组和二维数组的使用(一)

目录 导读1. 一维数组1.1 一维数组的创建1.2 数组的初始化1.3 一维数组的使用1.4 一维数组在内存中的存储 2. 二维数组2.1 二维数组的创建2.2 二维数组的初始化2.3 二维数组的使用2.4 二维数组在内存中的存储 博主有话说 导读 本篇主要讲解一维数组和二维数组的创建和使用&…

利用DMA的触发循环实现eTMR的PWM周期计数

利用DMA的触发循环实现对eTMR的PWM周期计数 文章目录 利用DMA的触发循环实现对eTMR的PWM周期计数引言分析问题eTMR的调试模式ModulizationFTM的多次重载事件终极大招-使用触发链 解决问题确认DMAMUX中的eTMR相关触发源eTMR产生触发信号 软件总结参考文献 引言 最近在同客户一起…

Web开发-登录页面设计流程

目录 确定页面设计样式创建js文件jquery.min.jsbootstrap.min.js 创建css文件bootstrap.min.cssmaterialdesignicons.min.cssstyle.min.css 创建ftl文件header.ftlfooter.ftllogin.ftlcss部分html部分 确定页面设计样式 可以自己用“画图”等软件进行设计&#xff0c;也可以打…